SYSTEM SOFTWARE, POWERPC RUN-TIME
ENVIRONMENT, MANAGING MEMORY, AND
RESOURCES

System Software

All Macintosh applications make many calls, for many purposes, to system software functions. Such
purposes include, for example, the creation of standard user interface elements such as windows and
menus, the drawing of text and graphics, and the coordination of the application's actions with other open
applications.'

The entire collection of system software functions is divided into functional groups known as managers.
In Carbon, each manager is part of a higher-level grouping called a manager group. The manager groups
and their constituent managers are shown in the following, in which those managers of particular relevance
to this book appear in bold typeface:

Application Utilities Facilities for extending human interface features and data-sharing
capabilities beyond those provided by the Human Interface Toolbox.

AltiVec Utilities Find By Content Translation Manager

Carbon Core Essential services that are generally devoid of a user interface, including
memory and process management.

Alias Manager Collection Manager Component Manager File Manager

Folder Manager Low Memory Memory Management Memory Manager
Accessors Utilities

Mixed Mode Multiprocessing Notification Manager Pascal String Utilities

Manager Services

Resource Manager Thread Manager Time Manager

Common OS Services

Display Manager Gestalt Manager Power Manager Process Manager

Speech Recognition Speech Synthesis

Manager Manager

Core FoundationaAbstracts several operating system utitlities fundamental to both Mac OS
8/9 and Mac OS X.

Base Services Bundle Services Collection Services Plug-in Services
Preferences Services Property List String Services URL Services

' The main other open application that an application needs to work with is the Finder. The Finder is not really part of the

system software, although it is sometimes difficult to tell where the Finder ends and the system software begins.

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources
Version 1.0 1-1

Services

Utility Services XML Services

Graphics Services Allows applications to construct and render images.

Carbon Printing Color Picker ColorSync Manager HTML Rendering
Manager Manager Library

Palette Manager QuickDraw Manager

1-2 Version 1.0 System Software, PowerPC Run-Time Environment, Managing Memory,

and Resources

Hardware Interfaces
Device Manager PCI Card Services

Human Interface Toolbox Comprises groups of libraries that implement the Mac OS
human interface.

Appearance Apple Help Carbon Event Carbon Help
Manager Manager Manager

Control Manager Dialog Manager Drag Manager Event Manager
Finder Interface Icon Utilities List Manager Menu Manager
Navigation Services Picture Utilities Scrap Manager Window Manager
Networking and Communication Services

Internet Config NSL manager Open Transport URL Access Manager

QuickTimeAssist your application in combining multiple forms of communication, such as text,
pictures, video, and music.

Image Compression Media Handlers Movie Toolbox QuickTime Components
Manager
QuickTime Media Layer QuickTime Music QuickTime Streaming QuickTime VR

Sound Manager

Runtime Services Provides programming interfaces that prepare code for execution and
control how functions call each other.

Code Fragment Debugger Services Math and Logical
Manager Utilities
Scripting and Apple Events

Apple Event Open Scripting

Manager Architecture

Text and Other International Services Assistance in creating applications for
world-wide markets

Apple Type Services for Unicode Date, Time, and Font Manager

Imaging Measurement Utilities

FontSync Multilingual Text Engine QuickDraw Text

Script Manager Text Encoding Conversion Text Services Manager
Manager

Text Utilities TextEdit Unicode Utilities

PowerPC Run-Time Environment

A run-time environment is a set of conventions which determine how code is to be loaded into memory,
where it is to be stored, how it is to be addressed, and how functions call other functions and system
software routines. The system software and your development system jointly determine the run-time
environment.

Fragments

The PowerPC run-time model is based on the use of fragments as the standard way of organising
executable code and data in memory. A fragment is any block of executable PowerPC code and its
associated data. Fragments can be of any size, and are complete, executable entities.

There are three broad categories of fragments, namely, applications, import libraries, and extensions.
(Import libraries and system extensions are sometimes called shared libraries or dynamically-linked
libraries.) An application is a fragment that can be launched by the user from the Finder.

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources

Version 1.0 1-3

Code Fragment Resource

You use a code fragment ('cfrg') resource (see Resources, below) to specify some characteristics of a code
fragment. For an application, the code fragment resource indicates to the Process Manager that the
application's data fork contains an executable code fragment container.

You do not have to create the 'cfrg' resource yourself because CodeWarrior does this for you when you
compile your application.

Organisation of Memory

The basic organisation of memory in the PowerPC run-time environment is as follows:

* A system partition, which is reserved for the exclusive use of the system, occupies the lowest
memory address. Part of the system partition is occupied by the system global variables, most of
which contain information of use to the system software, for example:

® Ticks, which contains the number of ticks since system startup. (A tick is 1/60th of a second.)
® MBarHeight, which contains the height of the menu bar.

* Most of the remaining space is allocated to the Process Manager, which creates an application
partition for each open application. Application partitions are loaded into the top part of RAM first.

The Application Partition

In each application partition, there is a stack and a heap, as well as space for the application's global
variables (see Fig 1).

STACK

APPLICATIOI
PARTITION

HEAP

APPLICATION GLOBAL VARIABLES
MASTER POINTERS

FIG 1 - STRUCTURE OF APPLICATION PARTIN

The Stack

The stack is used for memory allocation associated with the execution of functions. When an application
calls a function, space is allocated on the stack for a stack frame, which contains the function's
parameters, local variables and return address. The local variables and function parameters are popped off
the stack when the function has executed,. The C compiler generates the code that creates and deletes stack
frames for each function call.

It is important to understand that the Memory Manager has no way of preventing the stack from
encroaching on, and corrupting, the heap. Ordinarily, unless your application uses heavy recursion (one
function repeatedly calling itself), you almost certainly will never need to worry about the possibility of
stack overflow.’

The Heap

The application heap is that part of the application partition in which memory is dynamically allocated and
released on demand. Space within the heap is allocated, in blocks, by both direct or indirect calls to the
Memory Manager. An indirect allocation arises from a call to a function which itself calls a Memory
Manager memory allocation function.

*The reason that recursion increases the risk is that, each time the function calls itself, a new copy of that function's
parameters and variables is pushed onto the stack.

1-4 Version 1.0 System Software, PowerPC Run-Time Environment, Managing Memory,

and Resources

Managing Memory — Mac OS 8/9

Inside the Application Heap — Nonrelocatable and Relocatable
Memory Blocks

An application may use the Memory Manager to allocate two different types of memory blocks: a
nonrelocatable block and a relocatable block.

Nonrelocatable Blocks

Nonrelocatable blocks are blocks whose location in the heap is fixed. In its attempts to avoid heap
fragmentation (see below), the Memory Manager allocates nonrelocatable blocks as low in the heap as
possible, where necessary moving relocatable blocks upward to make space. Nonrelocatable blocks are
referenced using a pointer variable of data type ptr. ptr is defined as follows:

typedef char *Ptr; // A pointer to a signed char.

A pointer is simply the address of a byte in memory. Thus a pointer to a nonrelocatable block is simply
the address of the first byte in that block of memory. Note that, if a copy is made of the pointer variable
after the block is created, and since the block cannot be moved, that copy will correctly reference the block
until it is disposed of.

The Memory Manager function Newptr allocates a nonrelocatable block, for example:

Ptr myPointer;
myPointer = NewPtr(sizeof(myDataStructure));

Nonrelocatable blocks are disposed of by a call to Disposeptr.

Unlike relocatable blocks, there are only five things that your application can do with a nonrelocatable
block: create it; obtain its size; resize it; find which heap zone owns it; dispose of it.

Relocatable Blocks

Relocatable blocks are blocks which can be moved within the heap — for example, during heap
compaction operations (see below). To reference relocatable blocks, the Memory Manager uses double
indirection, that is, the Memory Manager keeps track of a relocatable block with a master pointer, which
is itself part of a nonrelocatable master pointer block in the application heap. When the Memory
Manager moves a relocatable block, it updates the master pointer so as to ensure that the master pointer
always contains the current address of the relocatable block.

One master pointer block, which contains 64 master pointers, is allocated for your application by the
Memory Manager at application launch. This block is located at the very bottom of the application heap
(see Fig 1)._The function MoreMasterPointers may be called by your application to allocate additional master
pointers. To ensure that these additional (nonrelocatable) blocks are allocated as low in the heap as
possible, the call to MoreMasterPointers should be made at the beginning of your program.’

Relocatable blocks are referenced using a handle variable of data type Handle. A handle contains the
address of a master pointer, as illustrated at Fig 2. Handle is defined as follows:

typedef Ptr *Handle; // A pointer to a master pointer.

? If these calls are not made, the Memory Manager will nonetheless automatically allocate additional blocks during application
execution if required. However, since master pointer blocks are nonrelocatable, such allocation, which will not be at the
bottom of the heap, is a possible cause of heap fragmentation. Your call to MoreMasterPointers should thus allocate sufficient
master pointers to ensure that the Memory Manager never needs to create additional master pointer blocks for you. (You can
empirically determine how many master pointers to allocate using a low-level debugger.)

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources
Version 1.0 1-5

.Relocatable block|:| Nonrelocatable block

myHandle 1234 myHandle 1234
STACK STACK
_— _— _—
HEAP HEAP

RELOCATABLE BLO
9876 «—

RELOCATABLE BLO
321

EXECUTABLE CODE EXECUTABLE CODE
MASTER POINTER BLOCK MASTER POINTER BLOCK
1234 MASTER POINTER 9876 I(l 1234 MASTER POINTER 3210
BEFORE RELOCATION AFTER RELOCATION

FIG 2 - A HANDLE TO A RELOCATABLE BLOCK

The Memory Manager function NewHandle allocates a relocatable block, for example:

Handle myHandle;
myHandle = NewHandle(sizeof(myDataStructure));

A relocatable block can be disposed of by a call to DisposeHandle. Note, however, that the Memory
Manager does not change the value of any handle variables that previously referenced that deallocated
block. Instead, those variables still hold the address of what was once the relocatable block's master
pointer. If you inadvertently use a handle to a block you have already disposed of, your application could
crash. You can avoid these problems by assigning the value NULL to the handle variable after you dispose
of the relocatable block.

Heap Fragmentation, Compaction, and Purging

The continuous allocation and release of memory blocks which occurs during an application's execution
can result in a condition called heap fragmentation. The heap is said to be fragmented when
nonrelocatable blocks or locked relocatable blocks (see below) are scattered about the heap, leaving
"holes" of memory between those blocks.

The Memory Manager continuously attempts to create more contiguous free memory space through an
operation known as heap compaction, which involves moving all relocatable blocks as low in the heap as
possible. However, because the Memory Manager cannot move relocatable blocks "around"
nonrelocatable blocks and locked relocatable blocks, such blocks act like log-jams if there is free space
below them. In this situation, the Memory Manager may not be able to satisfy a new memory allocation
request because, although there may be enough total free memory space, that space is broken up into small
non-contiguous blocks.

Heap fragmentation would not occur if all memory blocks allocated by the application were free to move
during heap compaction. However, there are two types of memory block which are not free to move:
nonrelocatable blocks and relocatable blocks which have been temporarily locked in place.

Locking and Unlocking Relocatable
Blocks

Despite the potential of such action to inhibit the Memory Manager's heap compaction activities, it is
nonetheless necessary to lock relocatable blocks in place in certain circumstances.

For example, suppose you dereference a handle to obtain a pointer (that is, a copy of the master pointer) to
a relocatable block and, for the sake of increased speed”, use that pointer within a loop to read or write data
to or from the block. If, within that loop, you call a function that has the potential to move memory, and if
that function actually causes the relocatable block to be moved, the master pointer will be correctly

* Accessing a relocatable block by double indirection (that is, through its handle) instead of by single indirection (ie, through
its master pointer) requires an extra memory reference.

1-6 Version 1.0 System Software, PowerPC Run-Time Environment, Managing Memory,

and Resources

updated but your copy (the pointer) will not. The net result is that your pointer no longer points to the data

and becomes what is known as a dangling pointer. This situation is illustrated at Fig 3.

.Relocatable bIock|:| Nonrelocatable block

myHandle 1234 myHandle 1234
myPtr 3210 myPtr 3210
STACK STACK
_— _—
HEAP HEAP
— RELOCATABLE BLO
9874
RELOCATABLE BLO
— 321(
EXECUTABLE CODE EXECUTABLE CODE
MASTER POINTER BLOCK MASTER POINTER BLOCK
1234 MASTER POINTER 3210 < 1234 MASTER POINTER 9876 <

AFTER CALL TO ROUTINE WHICH
HAS POTENTIAL TO MOVE MEMORY

BEFORE CALL TO ROUTINE WHICH
HAS POTENTIAL TO MOVE MEMORY

DANGUNT
POINTE
FIG 3 - A DANGLING POINTER

The documentation for system software functions indicates whether a particular function has the potential
to move memory. Generally, any function that allocates space from the application heap has this potential.
If such a function is not called in a section of code, you can safely assume that all blocks will remain
stationary while that code executes.

Relocatable blocks may be locked and unlocked using HLock and Hunlock. The following example
illustrates the use of these functions.

typedef struct

short intArray[1000];
char ch;
} Structure, *StructurePointer, **StructureHandle;

void myFunction(void)

{

StructureHandle theHdl;
StructurePointer thePtr;
short count;

theHd| = (StructureHandle) NewHandle(sizeof(Structure));

// Lock the relocatable block ...
// because the handle has been dereferenced ...

HLock(theHdl);
thePtr = *theHdI;

for(count=0;count<1000;count++)
(*thePtr).intArray[count] = 0; // and used in this loop ...
DrawChar((char)'A'); // which calls a function which could cause
} // the relocatable block to be moved.

HUnlock(theHdl);
}

// On loop exit, unlock the relocatable block.

Moving Relocatable Blocks High

The potential for a locked relocatable block to contribute to heap fragmentation may be avoided by moving
the block to the top of the heap before locking it. This should be done if new nonrelocatable blocks are to
be allocated while the relocatable block in question is locked.

MoveHHi is used to move relocatable blocks to the top of the heap. HLockHi is used to move relocatable
blocks to the top of the heap and then lock them. Be aware, however, that MoveHHi and HLockHi cannot
move a block to the top of the heap if a nonrelocatable block or locked relocatable block is located

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources
Version 1.0 1-7

between its current location and the top of the heap. In this situation, the block will be moved to a location
immediately below the nonrelocatable block or locked relocatable block.

Purging and Reallocating Relocatable
Blocks

In addition to compacting the heap in order to satisfy a memory allocation request, the Memory Manager
may purge unlocked relocatable memory blocks that have been made purgeable.

HPurge and HNoPurge change a relocatable block from unpurgeable to purgeable and vice versa. When you
make a relocatable block purgeable, your program should subsequently check the handle to that block
before using it if calls are made to functions which could move or purge memory.

If the handle's master pointer is set to NULL, then the Operating System has purged its block. To use the
information formerly in the block, space must then be reallocated for it and its contents must be
reconstructed.

Effect of a Relocatable Block’s
Attributes

Two attributes of a relocatable block are whether the block is currently locked/unlocked or
purgeable/non-purgeable. These attributes are stored in bits in the block’s master pointer tag byte’. The
following summarises the effect of these attributes on the Memory Manager’s ability to move and/or purge
a relocatable block:

Tag Byte Indicates Block Is: The Memory Manager Can:
Locked Purgeable Move The Purge the
Block Block
NO NO YES NO
NO YES YES YES
YES NO NO NO
YES YES NO NO

Note that a relocatable block created by a call to NewHandle is created initially unlocked and unpurgeable,
and that locking a relocatable block will also make it unpurgeable if it is currently purgeable.

Avoiding Heap Fragmentation

The ideal heap is one with all nonrelocatable blocks at the bottom of the heap, all unlocked relocatable
blocks above that, free space above that, and all relocatable blocks which must be locked for significant
periods at the top of the heap. This ideal can be approached, and significant heap fragmentation avoided,
by adherence to the following rules:

e At the beginning of the program, call MoreMasterPointers to allocate at least as many (nonrelocatable)
master pointers as are required during program execution.

e Allocate all other required nonrelocatable blocks at the beginning of the application's execution.

¢ Avoid disposing of, and subsequently reallocating, nonrelocatable blocks during the application's
execution.

e Ifyouneed to allocate a relocatable block that will need to be locked for a long period of time, call
ReserveMem at the beginning of the program to reserve memory for the block as close to the bottom
of the heap as is possible, and then lock the block immediately after allocating it.

e [farelocatable block is to be locked for a short period of time and nonrelocatable blocks are to be
allocated while it is locked, call MoveHHi to move the relocatable block to the top of the heap and
then lock it. Unlock the block when it no longer needs to be locked.

> The tag byte is the high byte of a master pointer. If Bit 5 of the tag byte is set, the block is a resource block (see below). If
Bit 6 is set, the block is purgeable. If Bit 7 is set, the block is locked.

1-8 Version 1.0 System Software, PowerPC Run-Time Environment, Managing Memory,

and Resources

Also bear in mind that, in memory management terms, a relocatable block that is always locked is worse
than a nonrelocatable block in that nonrelocatable blocks are always allocated as low in the heap as
possible, whereas a relocatable block is allocated wherever the Memory Manager finds it convenient.

Master Pointer Tag Byte - HGetState and HSetState

There are certain circumstances where you will want to save, and later restore, the current value of a
relocatable block's master pointer tag byte. Consider the following example, which involves three of an
imaginary application's functions, namely, Function A, Function B, and Function C:

e Function A creates a relocatable block. For reasons of its own, Function A locks the block before
executing a few lines of code. Function A then calls Function C, passing the handle to that function
as a formal parameter.

e Function B also calls Function C at some point, passing the relocatable block's handle to it as a
formal parameter. The difference in this instance is that, due to certain machinations in other areas
of the application, the block is unlocked when the call to Function C is made.

e Function C, for reasons of its own, needs to ensure that the block is locked before executing a few
lines of code, so it makes a call to HLock. Those lines executed, Function C then unlocks the block
before returning to the calling function. This will not be of great concern if the return is to Function
B, which expects the block to be still unlocked. However, if the return is to Function A, and if
Function A now executes some lines of code which assume that the block is still locked, disaster
could strike.

This is where the Memory Manager functions HGetState and HSetState come in. The sequence of events in
Function C should have been as follows:

SInt8 theTagByte;

theTagByte = HGetState(myHandle); // Whatever the current state is, save it.
HLock(myHandle); // Redundant if Function A is calling, but no harm.

(Bulk of the Function C code, which requires handle to be locked.)

HSetState(myHandle,theTagByte) // Leave it the way it was found. (It could have
// been locked. It could have been unlocked.)
return;

This is an example of a of what might be called a “well-mannered function”. It is an example of a rule that
you may wish to apply whenever you write a function that takes a handle to a relocatable block as a formal
parameter: If that function calls HLock, make sure that it leaves the block's tag byte (and thus the
locked/unlocked bit) in the condition in which it found it.°

Memory Leaks

When you have no further use for a block of memory, you ordinarily return that memory to the Memory
Manager by calling DisposePtr or DisposeHandle (Or ReleaseResource (see below)). In certain circumstances,
not disposing of a block which is no longer required can result in what is known as a memory leak.

Memory leaks can have unfortunate consequences for your application. For example, consider the
following function:

void theFunction(void)

Ptr thePointer;
OSErr osError;

thePointer = NewPtr(10000);
if(MemError() == memFullErr)
doErrorAlert(eOutOfMemory);

% Of course, this save/restore precaution will not really be necessary if you are absolutely certain that the block in question will
be in a particular state (locked or unlocked) every time Function C is called. But there is nothing wrong with a little coding
overkill to protect yourself from, for example, some future source code modifications which may add other functions which
call Function C, and which may assume that the block's attributes will be handed back in the condition in which Function C
found them.

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources

Version 1.0 1-9

// The nonrelocatable block is used for some temporary purpose here, but is not
// disposed of before the function returns.

}

When theFunction returns, the 10000-byte nonrelocatable block will still exist (even though, incidentally,
the local variable which previously pointed to it will not). Thus a large nonrelocatable block for which you
have no further use remains in memory (at what is now, incidentally, an unknown location). If theFunction
is called several more times, a new nonrelocatable block will be created by each call and the size of the
memory leak will grow, perhaps eventually causing MemErr to return memfFullerr. In this way, memory leaks
can bring you application to a standstill and may, in some circumstances, cause it to crash.’

Memory Manager Errors

The error code resulting from the last call to a Memory Manager function.may be retrieved by calling the
function Memerror. Some of the error codes which may be returned by MemeError are as follows:

Value Constant Description

0 nokErr No error occurred.

-108 memFullErr No room in heap.

-109 nilHandleErr Illegal operation on a NULL handle.

-117 memLockedErr Trying to move a locked block (MoveHH;).

Managing Memory — Mac OS X Considerations

Preamble — Memory in Mac OS X

In Mac OS X, each application runs in its own address space, meaning that an application cannot reference
memory locations outside its assigned address space.

Compared with Mac OS 8/9, Mac OS X uses an entirely different heap structure and allocation behaviour.

Mac OS X uses a dynamic and highly efficient virtual memory system, which is always enabled. Carbon
application must therefore assume that virtual memory is always on.

Memory Management Considerations

Allocating Memory

The functions FreeMem (get the amount of free memory in the current heap zone), purgeMem (purge blocks
without compacting the heap), and MaxMem (compact the heap and purge all the purgeable blocks from the
current heap zone) are all included in Carbon, and behave as expected under Mac OS 8/9. When your
application is running on Mac OS X, however, these functions are more or less meaningless because, in
Mac OS X, the system provides virtually unlimited memory.

Stack Size

A Carbon application may have different stack sizes under Mac OS 8/9 and Mac OS X; accordingly, the
StackSpace function (which returns the amount of unused space on the stack at the time of the call) is no
longer very useful.

Master Pointer Allocation

Master pointers do not need to be pre-allocated, or their number optimised, in the Mac OS X memory
model. Accordingly, the effect of the MoreMasterPointers function only applies when your application is run
on Mac OS 8/9.

" The dynamic memory inspection tool ZoneRanger, which is included with Metrowerks CodeWarrior, can be used to check
your application for memory leaks.

1-10 Version 1.0 System Software, PowerPC Run-Time Environment, Managing Memory,

and Resources

Resources

In order to meet various requirements of the system software, your application must provide its own
resources, for example, resources which describe the application's user interface elements such as menus,
windows, controls, dialogs and icons. In addition, the system software itself provides a number of
resources (for example, fonts, patterns, icons, etc.) which may be used by your application.

The concept of resources reflects the fact that, in the Macintosh environment, inter-mixing code and data
in a program is not encouraged. For example, it is usual practise to separate changeable data, such as
message strings which may need to be changed in a foreign-language version of the application, from the
application's code. All that is required in such a case is to create a resource containing the foreign
language version of the message strings. There is thus no necessity to change and re-compile the source
code in order to produce a foreign-language version of the application.

The subject of resources is closely related to the subject of files. A brief digression into the world of files
is thus necessary.

About Files — The Data Fork and the Resource Fork

On the Macintosh, a file is a named, ordered sequence of bytes stored on a volume and divided into two
forks:

e The Data Fork. The data fork typically contains data created by the user.

e The Resource Fork. The resource fork of a file contains resources, which are collections of
data of a defined structure and type.

Note

Before the introduction of Mac OS X and Carbon, application and document resources were invariably stored in
the resource fork of, respectively, application and document files. Mac OS X and Carbon introduced an
alternative scheme whereby resources can be placed in the data fork of a separate resource file. The main reason
for this alternative scheme is that it prevents application and document files from losing resource data when
moved around different file systems or between Macintosh and non-Macintosh systems.

This alternative scheme is, however, not addressed in this book. The content of this book assumes that
application and document resources are stored in the resource fork of application and document files, and the
associated demonstration program files reflect that arrangement.

All Macintosh files contain both a resource fork and a data fork, even though one or both of these forks
may be empty. Note that the resource fork of a file is also called a resource file, because in some respects
you can treat it as if it were a separate file.

The resource fork of a document file contains resources specific to the document, such as the size and
location of the document's window when the document was last closed. The resource fork of an
application file includes, typically, resources which describe the application's windows, menus, etc. Fig 4
illustrates the typical contents of the data and resource forks of an application file and a document file.

The data fork can contain any kind of data organised in any fashion. Your application can store data in the
data fork of a document file in whatever way it deems appropriate, but it needs to keep track of the exact
byte location of each particular piece of saved data in order to be able to access that data when required.
The resource fork, on the other hand, is highly structured. As will be seen, all resource forks contain a
map which, amongst other things, lists the location of all resources in the resource fork. This greatly
simplifies the task of accessing those resources.

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources
Version 1.0 1-11

APPLICATION FILE DOCUMENT FILE

J 2 | 1

POWERPC DESCRIPTIONS OH USER'S DATA LAST LOCATION AIND
APPLICATION CODE MENUS, DIALOG SIZE OF WINDOW.
BOXES, ICONS, ETE.
MISSING
TEXT STRINGS FOR APPLICATION NAM
HELP BALLOONS
AND DIALOG BOXES. PAPER SIZE
SPECIFIED IN PAG
SETUP... DIALOG
DATA FORK RESOURCE FORK DATA FORK RESOURCE FORK

FIG 4 - TYPICAL CONTENTS OF DATA FORKS AND RESOURCE FORKS IN APPLICAT

Resources and the Application

During its execution, an application may read resources from:

e The application's resource file, which is opened automatically when the application is launched.

* The System file, which is opened by the Operating System at startup and which contains resources
which are shared by all applications (for example, fonts, icons, sounds, etc.) and resources which
applications may use to help present the standard user interface.

* Other resource files, such as a preferences file in the Preferences folder holding the user's
application-specific preferences, or the resource fork of a document file, which might define certain
document-specific preferences.

The Resource Manager provides functions which allow your application to read in these resources and, in
addition, to create, delete, open, modify and write resources in, from and to any Macintosh file. The
following, however, is concerned only with creating resources for the application's resource file and with
reading in standard resources from the application and System files. Other aspects of resources,
including custom resources and resources in files other than the application and System files, are
addressed at Chapter 19.

Resource Types and Resource IDs

An application refers to a resource by passing the Resource Manager a resource specification, which
consists of the resource type and a resource ID:

e Resource Type. A resource type is specified by any sequence of four alphanumeric
characters, including the space character, which uniquely identifies a specific type of resource.
Both uppercase and lowercase characters are used. Some of the standard resource types defined by
the system software are as follows:

Type Description Type Description

'ALRT Alert template. '‘DLOG' Dialog template.

‘DITL Item list in dialog or alert. 'SIZE' Size of application's partition and other info.
'FONT' Bitmapped font. ‘WIND' Window template.

'MBAR' Menu bar. 'snd ' Sound. (Space character is required.)

‘PICT QuickDraw picture. 'STR#!' String list.

You can also create your own custom resource types if your application needs resources other than
the standard types. An example would be a custom resource type for application-specific
preferences stored in a preferences file.®

¥ When choosing the characters to identify your custom resource types, note that Apple reserves for its own use resource types
consisting entirely of lowercase characters and special symbols. Your custom resource types should therefore contain at least
one uppercase character.

1-12 Version 1.0 System Software, PowerPC Run-Time Environment, Managing Memory,

and Resources

Resource ID. A resource ID identifies a specific resource of a given type by number. System
resource IDs range from -32768 to 127. In general, resource IDs from 128 to 32767 are available
for resources that you create yourself, although the numbers you can use for some types of resources
(for example, font families) are more restricted. An application's definition functions (see below)
should use IDs between 128 and 4095.

Creating a Resource

At the very least, you may need to create resources for the standard user interface elements used by your
application. You typically define the user interface elements in resources and then use Menu Manager,
Window Manager, Dialog Manager or Control Manager functions to create these elements, based on their
resource descriptions, as needed.

You can create resource descriptions using a resource editor such as Resorcerer (which uses the familiar
point-and-click approach), or you can provide a textual, formal description of resources in a file and then
use a resource compiler, such as Rez, to compile the description into a resource.” An example of a resource
definition for a window in Rez input format is as follows:

resource 'WIND' (128, preload, purgeable)

{64,60,314,460}, /* Window rectangle. (Initial window size and location.) */
kWindowDocumentProc, /* Window definition ID. */

invisible, /* Window is initially invisible. */

goAway, /* Window has a close box. */

0x0, /* Reference constant. */

"untitled", /* Window title. */

staggerParentWindowScreen /* Optional positioning specification. */

}

The structure of the compiled 'wIND' resource is shown at Fig 5.

BYTES
INITIAL RECTANGLE 8
WINDOW DEFINITION ID 2
VISIBILITY STATUS 2
PRESENCE OF CLOSE BOX 2
REFERENCE CONSTANT 4
LENGTH (n) OF WINDOW TITLE 1
WINDOW TITLE n
POSITIONING SPECIFICATION 2

FIG 5 - STRUCTURE OF A COMPILED WINDOW ("

Resource Attributes

Note the words preload and purgeable in the preceding '‘WIND' resource definition. These are constants
representing resource attributes, which are flags which tell the Resource Manager how to handle the
resource. Resource attributes are described by bits in the low-order byte of an integer value:

Bi Constant Description

t

1 resChanged Resource has been changed.

2 resPreload Resource is to be read into memory immediately after the resource fork is opened.

3 resProtected Application cannot change the resource ID, modify the resource's contents or remove the resource

from the resource fork.

? This book assumes the use of Resorcerer, and all demonstration program resources were created using Resorcerer.

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources
Version 1.0 1-13

4 resLocked Relocatable block occupied by the resource is to be locked. (Overrides the resPurgeable attribute.)
5 resPurgeable Relocatable block occupied by the resource is to be purgeable.

Note that, if both the resPreload and the resLocked attributes are set, the Resource Manager loads the resource
as low as possible in the heap.

Resources Which Must Be Unpurgeable. Some resources must not be made purgeable.
For example, the Menu Manager expects menu resources to remain in memory at all times.

Resources Which May Be Purgeable. Other resources, such as those relating to windows,
controls, and dialogs, do not have to remain in memory once the corresponding user interface element has
been created. You may therefore set the purgeable attribute for those kinds of resources if you so desire.
The following considerations apply to the decision as to whether to make a resource purgeable or
unpurgeable:

* The concept of purgeable resources dates back to the time when RAM was limited and
programmers had to be very careful about allowing resources which were not in use to continue to
occupy precious memory. Nowadays, however, RAM is not so limited.

* Some resources (for example, large 'PICT' resources and 'snd ' resources) do require a lot of memory,
even by today's standards. Accordingly, such resources should generally be made purgeable.

e As will be seen, there are certain hazards associated with the use of purgeable resources. These
hazards must be negated by careful programming involving additional lines of code.

Given these considerations, a sound policy would be to make all small and basic resources unpurgeable
and set the resPurgeable attribute only in the case of comparatively large resources which are not required to
remain permanently in memory.

Template Resources and Definition Resources

The 'wiND' resource defined above is an example of a template resource. A template resource defines the
characteristics of a desktop object, in this case a window's size, location, etc., and the window definition
function (specified by the constant kwindowDocumentProc) to be used to draw it. Definition functions,
which determine the look and behaviour of a desktop object, are executable code segments contained
within another kind of resource called a definition resource.

Resources in Action

The Resource Map

Your application file's resource fork contains, in addition to the resources you have created for your
application, an automatically created resource map. The resource map contains entries for each resource
in the resource fork.

When your application is launched, the system first gets the Memory Manager to create the application
heap and allocate a block of master pointers at the bottom of the heap. The Resource Manager then opens
your application file's resource fork and reads in the resource map, followed by those resources which have
the resPreload attribute set.

The handles to the resources which have been loaded are stored in the resource map in memory. The
following is a diagrammatic representation of a simple resource map in memory immediately after the
resource map, together with those resources with the preload attribute set, have been loaded.

Type | ID Attributes Hand
Preload | Lock |Purgeab| o
le
MENU 128 . 123C
WIND 128 . NULL
PICT 128 . NULL

1-14 Version 1.0 System Software, PowerPC Run-Time Environment, Managing Memory,

and Resources

| pcT | 129 | | | . | NULL |

Note that the handle entry in the resource map contains NULL for those resources that have not yet been
loaded. Note also that this handle entry is filled in only when a resource is loaded for the first time, and
that that entry remains even if a purgeable resource is later purged by the Memory Manager.

Reading in Non-Preloaded Resources

Some system software managers use the Resource Manager to read in resources for you. Using the 'wiND'
resource listed in the above resource map as an example, when the Window Manager function
GetNewCWindow is called to create a new window (specifying 128 as the resource ID), GetNewCwindow, in
turn, calls the Resource Manager function GetResource. GetResource loads the resource (assuming that it is
not currently in memory), returns the handle to GetNewCwindow, and copies the handle to the appropriate
entry in the resource map. This is an example of an indirect call to the Resource Manager.

Other resources are read in by direct calls to the Resource Manager. For example, the 'PICT' resources
listed in the above example resource map would be read in by calling another of the Get... family of
resource-getting functions directly, for example:

#define rPicturel 128

#define rPicture2 129

i’li.cHandIe piclHdl;
PicHandle pic2Hd]I;

.p;iclHdI = GetPicture(rPicturel);
pic2Hd|l = GetPicture(rPicture2);

Once again, and assuming that the resources have not previously been loaded, the handle returned by each
GetPicture call is copied to the appropriate entry in the resource map.

Purgeable Resources

When a resource which has the resPurgeable attribute set has been loaded for the first time, the handle to
that resource is copied to the appropriate entry in the resource map in the normal way. If the Memory
Manager later purges the resource, the master pointer pointing to that resource is set to NULL by the
Memory Manager but the handle entry in the resource map remains. This creates what is known as an
empty handle.

If the application subsequently calls up the resource, the Resource Manager first checks the resource map
handle entry to determine whether the resource has ever been loaded (and thus whether a master pointer
exists for the resource). If the resource map indicates that the resource has never been loaded, the
Resource Manager loads the resource, returns its handle to the calling function, and copies the handle to
the resource map.

If, on the other hand, the resource map indicates that the resource has previously been loaded (that is, the
handle entry in the resource map contains the address of a master pointer), the Resource Manager checks
the master pointer. If the master pointer contains NULL, the Resource Manager knows that the resource has
been purged, so it reloads the resource and updates the master pointer. Having satisfied itself that the
resource is in memory, the Resource Manager returns the resource's handle to the application.

Problems with Purgeable Resources

Using purgeable resources optimises heap space; however, misuse of purgeable resources can crash an
application. For example, consider the following code example, which loads two purgeable 'PICT' resources
and then uses the drawing instructions contained in those resources to draw each picture.

piclHdIl = GetPicture(rPicturel); // Load first 'PICT' resource.
pic2Hd| = GetPicture(rPicture2); // Load second 'PICT' resource.

if(piclHdI) // If the handle to first resource is not NULL ...
DrawPicture(piclHdl,&destRect); // ... draw the first picture.
if(pic2HdI) // If the handle to second resource is not NULL

DrawPicture(pic2HdI,&destRect); // ... draw the second picture.

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources
Version 1.0 1-15

GetPicture 1s one of the many functions that can cause memory to move. When memory is moved, the
Memory Manager may purge memory to obtain more heap space. If heap space is extremely limited at the
time of the second call to GetPicture, the first resource will be purged by the Memory Manager, which will
set the master pointer to the first resource to NULL to reflect this condition. The variable pic1Hdl will now
contain an empty handle. Passing an empty handle to DrawPicture just about guarantees a crash. (Of course,
in the above code example, the possiblity of a crash is avoided because the line if(pic1Hdl) prevents the line
from executing.)

There is a second problem with this code. Like GetPicture, DrawPicture also has the potential to move
memory blocks. If the second call to GetPicture did not result in the first resource being purged, the
possibility remains that it will be purged while it is being used (that is, during the execution of the
DrawPicture function).

To avoid such problems when using purgeable resources, you should observe these steps:

e Get (that is, load) the resource only when it is needed.

¢ Immediately make the resource unpurgeable.

® Use the resource immediately after making it unpurgeable.
¢ Immediately after using the resource, make it purgeable.

The following revised version of the above code demonstrates this approach:
piclHdIl = GetPicture(rPicturel); // Load first 'PICT' resource.

if(pic1HdI) /I If the resource was successfully loaded ...
HNoPurge((Handle) pic1HdI); // make the resource unpurgeable ...
DrawPicture(picl1Hdl,&destRect); // draw the first picture ...
HPurge((Handle) pic1Hdl); // and make the resource purgeable again.

}

pic2HdIl = GetResource(rPicture2); // Repeat for the second 'PICT' resource.

if(pic2HdI)

{

HNoPurge((Handle) pic2Hdl);
DrawPicture(pic2HdI,&destRect);
HPurge((Handle) pic2HdI);

Note that this procedure only applies when you use functions which get resources directly (for example
GetResource, GetPicture, etc.). It is not required when you call GetResource indirectly (for example, when you
call the Window Manager function GetNewCWindow) because functions like GetNewCWindow know how to
treat purgeable resources properly.

Note also that LoadResource may be used to ensure that a previously loaded, but purgeable, resource is in
memory before an attempt is made to use it. If the specified resource is not in memory, LoadResource will
load it. The essential difference between LoadResource and the Get... family of resource-getting functions is
that the latter return a handle to the resource (loading the resource if necessary), whereas LoadResource
takes a handle to a resource as a parameter and loads the resource if necessary.

Releasing Resources

When you have finished using a resource loaded by a function which gets resources directly, you should
call the appropriate function to release the memory associated with that resource. For example,
ReleaseResource 1s used in the case of generic handles obtained with the GetResource function.
ReleaseResource frees up all the memory occupied by the resource and sets the resource's handle in the
resource map to NULL.

You do not need to be concerned with explicitly releasing resources loaded indirectly (for example, by a
call to GetNewCwindow). Using the case of a window resource template as an example, the sequence of
events following a call to GetNewCwindow is as follows:

® GetNewCWindow calls GetResource to read in the window resource template whose ID is specified in
the GetNewCwindow call.

1-16 Version 1.0 System Software, PowerPC Run-Time Environment, Managing Memory,

and Resources

* A relocatable block is created for the template resource and marked as purgeable, as specified by the
resource's attributes. (You should always specify window template resources as purgeable.)

e The window template's block is then temporarily marked as unpurgeable while:
® A block is created for an opaque data structure'’ known as a window object.
e Data is copied from the resource template into the window object.

¢ The window template's block is then marked as purgeable.

Resource Manager Errors

The error code resulting from the last call to a Resource Manager function may be retrieved by calling the
function ResError. Some of the error codes which may be returned by ResError are as follows:

Valu Constant Description

e

0 noErr No error occurred.

-192 resNotFound Resource not found.
-193 resFNotFound Resource file not found.

' Opaque data structures are explained at Chapter 3.

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources
Version 1.0 1-17

Main Memory Manager Data Types and Functions

Data Types

typedef char *Ptr; // Pointer to nonrelocatable block.
typedef Ptr *Handle; // Handle to relocatable block.
typedef long Size; // Size of a block in bytes.

Function

Allocating and Releasing NonRelocatable Blocks of Memory

Ptr NewPtr(Size byteCount);
Ptr NewPtrClear(Size byteCount);
void DisposePtr(Ptr p);

Allocating and Releasing Relocatable Blocks of Memory

Handle NewHandle(Size byteCount);
Handle NewHandleClear(Size byteCount);
Handle NewEmptyHandle(void);

Handle NewEmptyHandleSys(void);

void DisposeHandle(Handle h);

Changing the Sizes of Nonrelocatable and Relocatable Blocks

Size GetPtrSize(Ptr p);

void SetPtrSize(Ptr p,Size newSize);

Size GetHandleSize(Handle h);

void SetHandleSize(Handle h,Size newSize);

Setting the Properties of Relocatable Blocks

void HLock(Handle h);

void HUnlock(Handle h);

void HPurge(Handle h);

void HNoPurge(Handle h);

SInt8 HGetState(Handle h);

void HSetState(Handle h,SInt8 flags);

Managing Relocatable Blocks

void EmptyHandle(Handle h);

void ReallocateHandle(Handle h,Size byteCount);
Handle RecoverHandle(Ptr p);

void ReserveMem(Size cbNeeded);

void MoveHHi(Handle h);

void HLockHi(Handle h);

Manipulating Blocks of Memory

void BlockMove(const void *srcPtr,void *destPtr,Size byteCount);
void BlockMoveData(const void *srcPtr,void *destPtr,Size byteCount);
OSErr PtrToHand(const void *srcPtr,Handle *dstHndl,long size);

OSErr PtrToXHand(const void *srcPtr,Handle dstHndl,long size);

OSErr HandToHand(Handle *theHndl);

OSErr HandAndHand(Handle hand1l,Handle hand2);

OSErr PtrAndHand(const void *ptrl,Handle hand2,long size);

Allocating Master Pointers

void MoreMasterPointers(UInt32 inCount);
Accessing Memory Conditions and Freeing Memory

long FreeMem(void); /1 Useful under Mac OS 8/9, almost meaningless under Mac OS X.

void PurgeMem(Size cbNeeded); // Useful under Mac OS 8/9, almost meaningless under Mac OS X.
Size MaxMem(size *grow); // Useful under Mac OS 8/9, almost meaningless under Mac OS X.
long MaxBlock(void);

void PurgeSpace(long *total,long *contig);

long StackSpace(void); // Not very useful in Carbon.

Size CompactMem(Size cbNeeded);

Checking for Errors
OSErr MemeError(void);

1-18 Version 1.0 System Software, PowerPC Run-Time Environment, Managing Memory,

and Resources

Main Resource Manager Constants, Data Types, and
Functions

Constants

Resource Attributes

resSysHeap = 64 System or application heap?
resPurgeable = 32 Purgeable resource?
resLocked =16 Load itin locked?
resProtected =8 Protected?

resPreload =4 Load in on OpenResFile?
resChanged =2 Resource changed?
Data Types

typedef unsigned long FourCharCode;
typedef FourCharCode ResType;

Functions

Reading Resources Into Memory

Handle GetResource(ResType theType,short thelD);
Handle GetlResource(ResType theType,short thelD);
void LoadResource(Handle theResource);

Disposing of Resources

void ReleaseResource(Handle theResource);
Checking for Errors

short ResError(void);

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources
Version 1.0 1-19

Demonstration Program SysMemRes Listing

// skkokokokokokkokokokokokkokokokokkokokokkkkokokokkkkokokokkkoskokokkkskokokok sk kokokok sk kskokokok sk kokokkokkskokok sk kkkokok ok kkokok sk kkskokok sk kkokok ok k ok

// SysMemRes.c
//***
1

// This program:

1/

// * Loads a window template ("WIND') resource and creates a window.

1

// » Allocates a relocatable block in the application's heap, gets its size in bytes, draws

// the size in the window, and then disposes of the block.

1

// * Loads a purgeable 'PICT' resource and a non-purgeable 'STR ' resource and draws them in
// the window.

1/

/I = Checks if any error codes were generated as a result of calls to Memory Manager and

/I Resource Manager functions.

Z ¢ Terminates when the mouse button is clicked.

Z The program utilises the following resources:

Z ¢ A 'plst' resource.

Z * A 'WIND' resource (purgeable).

Z ¢ A 'PICT' resource (purgeable).

Z * A'STR ' resource (non-purgeable).
;;***

1

oSS
#include <Carbon.h>

1

LSS T

#define rWindowResourcelD 128
#define rStringResourcelD 128
#define rPictureResourcelD 128

void main (void);
void doPreliminaries (void);
void doNewWindow (void);
void doMemory (void);
void doResources (void);

J] FHRRFRRAFRAFAAAAAFAAFAAAFAAFAAAAAFAAFAFAAFAAFAAA A AFAAFAAFAAA A AAAFAAFAAA AR ARFHX 1310

void main(void)

{
doPreliminaries();
doNewWindow();
doMemory();
doResources();

QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);

while(!Button())

’

}

J] FRRRRRRR SRR RS SRRRRRRssRRRRRRRRRR K. o Preliminaries

void doPreliminaries(void)

{

MoreMasterPointers(32);

1-20 Version 1.0 System Software, PowerPC Run-Time Environment, Managing Memory,

and Resources

InitCursor();

}

// Forrkkkokskokoololokorokkokokokskokokolokotorokkkokokokskokokobotorotorkokokokskokokobotorotorkokokokskokokolotolorokkkslolskokokokokokokokx k- qoNewWindow

void doNewWindow(void)

{

WindowRef windowRef;

windowRef = GetNewCWindow(rWindowResourcelD,NULL,(WindowRef) -1);
if(windowRef == NULL)
{
SysBeep(10);
ExitToShell();
}

SetPortWindowPort(windowRef);
UseThemeFont(kThemeSystemFont,smSystemScript);

}

] ook doMemory

void doMemory(void)

Handle theHdl;

Size blockSize;
OSErr memoryError;
Str255 theString;

theHdl = NewHandle(1024);
if(theHd! '= NULL)
blockSize = GetHandleSize(theHdl);

memoryError = MemError();
if(memoryError == nokErr)
{
MoveTo(170,35);
DrawString("\pBlock Size (Bytes) =");
NumToString(blockSize,theString);
DrawString(theString);

MoveTo(165,55);
DrawString("\pNo Memory Manager errors");

DisposeHandle(theHdl);
}
}

[] FRRRRRRR R R Rk R Rk Rk k.- doResources

void doResources(void)

PicHandle pictureHdl;
StringHandle stringHdl;
Rect pictureRect;
OSErr resourcekError;

pictureHdl = GetPicture(rPictureResourcelD);
if(pictureHdl == NULL)
{
SysBeep(10);
ExitToShell();
}

SetRect(&pictureRect,148,75,348,219);

HNoPurge((Handle) pictureHdl);
DrawPicture(pictureHdl,&pictureRect);
HPurge((Handle) pictureHdl);

stringHdl = GetString(rStringResourcelD);
if(stringHdl == NULL)
{

SysBeep(10);
ExitToShell();
}

MoveTo(103,250);
DrawString(*stringHdl);

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources
Version 1.0 1-21

ReleaseResource((Handle) pictureHdl);
ReleaseResource((Handle) stringHdl);

resourceError = ResError();
if(resourceError == nokErr)
{
MoveTo(160,270);
DrawString("\pNo Resource Manager errors");
}
}

] FHRRFFAAFAAAAAAAAFAAAKAAAFAAAAAAAAFAAAKFAAFAAAAAFAAFKAAAKFAAFAAFAAFAAAFAAFAAFAAFAAFFAAFAAFAAFAAK

1-22 Version 1.0 System Software, PowerPC Run-Time Environment, Managing Memory,

and Resources

Demonstration Program SysMemRes Comments

The 'pist' (Property List) Resource

As stated in the listing, one of the resources utilised by the program is a 'plst' (property list) resource. Carbon applications
must contain a 'plst' resource with ID 0 in order for the Mac OS X Launch Services Manager to recognize them as Carbon
applications. If the 'plst' resource is not provided, the application will be launched as a Classic application.

The 'plst' resource used is actually an empty 'plst' resource. As will be seen at Chapter 9, however, this resource, apart from

causing Mac OS X to recognise applications as Carbon applications, also allows applications to provide information about
themselves to the Mac OS X Finder.

includes

Carbon greatly simplifies the matter of determining which Universal Headers files need to be included in this section in any
program. All that is required is to include the header file Carbon.h, which itself causes a great many header files to be
included. For this particular program, if Carbon.h is not specified, the following header files would need to be included for the
reasons indicated:
Appearance.h Constant: kThemeSystemFont

Appearance.h itself includes MacTypes.h, which contains:

Data Types: SIntl6 Str255 Size OSErr Handle Rect StringHandle
Constants: noErr NULL

Appearance.h also includes MacWindows.h, which contains:
Prototypes: GetNewCWindow GetWindowPort
MacWindows.h itself includes Events.h, which contains:
Prototype: Button

MacWindows.h also includes Menus.h, which itself includes Processes.h, which
contains:

Prototype: ExitToShell

Appearance.h also includes QuickDraw.h, which contains:

Prototypes: InitCursor SetPortWindowPort SetRect DrawPicture MoveTo
GetPicture

Data Types: WindowRef PicHandle

QuickDraw.h itself includes QuickDrawText.h, which contains:

Prototypes: TextFont DrawString

MacMemory.h Prototypes: NewHandle DisposeHandle GetHandleSize HNoPurge HPurge
MemError MoreMasterPointers

Resources.h Prototypes: ReleaseResource ResError

Sound.h Prototype: SysBeep

TextUtils.h Prototype: GetString
TextUtils.h itself includes NumberFormatting.h, which contains:
Prototypes: NumToString

It would be a good idea to peruse the header files MacMemory.h and Resources.h at this stage. Another header file which
should be perused early in the piece is MacTypes.h.

defines
Constants are established for the resource IDs of the 'WIND', 'PICT' and 'STR ' resources.
main

The main function calls the functions that perform certain preliminaries common to most applications, create a window,
allocate and dispose of a relocatable memory block, and draw a picture and text in the window. It then waits for a button
click before terminating the program

The call to the QuickDraw function QDFlushPortBuffer is ignored when the program is run on Mac OS 8/9. It is required on
Mac OS X because Mac OS X windows are double-buffered. (The picture and text are drawn in a buffer and, in this program,
the buffer has to be flushed to the screen by calling QDFlushPortBuffer.) This is explained in more detail at Chapter 4.

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources
Version 1.0 1-23

doPreliminaries

The call to MoreMasterPointers is ignored when the program is run on Mac OS X. (Master pointers do not need to be pre-
allocated, or their number optimised, in the Mac OS X memory model.)

On Mac OS 8/9, the call to MoreMasterPointers to allocate additional master pointers is really not required in this simple
program because the system automatically allocates one block of master pointers at application launch. However, in larger
applications where more than 64 master pointers are required, the call to MoreMasterPointers should be made here so that all
master pointer (nonrelocatable) blocks are located at the bottom of the heap. This will assist in preventing heap
fragmentation. Note that specifying a number less than 32 in the inCount parameter will result in 32 master pointers in the
allocated block.

The call to InitCursor sets the cursor shape to the standard arrow cursor and sets the cursor level to 0, making it visible.
doNewWindow

doNewWindow creates a window.

The call to GetNewCWindow creates a window using the 'WIND' template resource specified in the first parameter. The type,
size, location, title, and visibility of the window are all established by the 'WIND' resource. The third parameter tells the
Window Manager to open the window in front of all other windows.

Recall that, as soon as the data from the 'WIND' template resource is copied to the opaque data structure known as a window
object during the creation of the window, the relocatable block occupied by the template will automatically be marked as
purgeable.

The call to SetPortWindowPort makes the new window's graphics port the current port for drawing operations. The call to the
Appearance Manager function UseThemeFont sets the font for that port to the system font.

doMemory

doMemory allocates a relocatable block of memory, gets the size of that block and draws it in the window (or, more
accurately, in the window's graphics port), and checks for memory errors.

The call to NewHandle allocates a relocatable block of 1024 bytes. The call to GetHandleSize returns the size of the allocated
area available for data storage (1024 bytes). (The actual memory used by a relocatable block includes a block header and up
to 12 bytes of filler.)

The call to MemError returns the error code of the most recent call to the Memory Manager. If no error occurred, the size
returned by GetHandleSize is drawn in the window, together with a message to the effect that MemError returned no error.
DisposeHandle is then called to free up the memory occupied by the relocatable block.

MoveTo moves a "graphics pen" to the specified horizontal and vertical coordinates. DrawString draws the specified string at
that location. NumToString creates a string of decimal digits representing the value of a 32-bit signed integer. These calls
are incidental to the demonstration.

doResources

doResources draws a picture and some text strings in the window.

GetPicture reads in the 'PICT' resource corresponding to the ID specified in the GetPicture call. If the call is not successful, the
system alert sound is played and the program terminates.

The SetRect call assigns values to the left, top, right and bottom fields of a Rect variable. This Rect is required for a later call
to DrawPicture.

The basic rules applying to the use of purgeable resources are to load it, immediately make it unpurgeable, use it
immediately, and immediately make it purgeable. Accordingly, the HNoPurge call makes the relocatable block occupied by
the resource unpurgeable, the DrawPicture call draws the picture in the window's graphics port, and the HPurge call makes
the relocatable block purgeable again. Note that, because HNoPurge and HPurge expect a parameter of type Handle,
pictureHdl (a variable of type PicHandle) must be cast to a variable of type Handle.

GetString then reads in the specified 'STR ' resource. Once again, if the call is not successful, the system alert sound is
played and the program terminates. MoveTo moves the graphics "pen" to an appropriate position before DrawString draws
the string in the window's graphics port. (Since the 'STR ' resource, unlike the 'PICT' resource, does not have the purgeable
bit set, there is no requirement to take the precaution of a call to HNoPurge in this case.)

Note the parameter in the call to DrawString. stringHdl, like any handle, is a pointer to a pointer. It contains the address of a
master pointer which, in turn, contains the address of the data. Dereferencing the handle once, therefore, get the required
parameter for DrawString, which is a pointer to a string.

The calls to ReleaseResource release the 'PICT' and 'STR ' resources. These calls release the memory occupied by the
resources and set the associated handles in the resource map in memory to NULL.

The ResError call returns the error code of the most recent resource-related operation. If the call returns noErr (indicating
that no error occurred as a result of the most recent call by a Resource Manager function), some advisory text is drawn in the
window.

The next six lines examine the result of the most recent call to a memory manager function and draw some advisory text if no
error occurred as a result of that call.

1-24 Version 1.0 System Software, PowerPC Run-Time Environment, Managing Memory,

and Resources

Note that the last two calls to DrawString utilise "hard-coded" strings. This sort of thing is discouraged in the Macintosh
programming environment. Such strings should ordinarily be stored in a 'STR#' (string list) resource rather than hard-coded
into the source code. The \p token causes the compiler to compile these strings as Pascal strings.

PASCAL STRINGS AND C STRINGS

As stated in the Preface, when it comes to the system software, the ghost of the Pascal language forever haunts the C
programmer. For example, a great many system software functions take Pascal strings as a required parameter, and
some functions return Pascal strings.

Pascal and C strings differ in their formats. A C string comprises the characters followed by a terminating 0 (or NULL
byte):

S
IMIY] [S|ITIR[IIN|G]|O]
e e s S e

A C string is thus said to be "null-terminated".
In a Pascal string, the first byte contains the length of the string, and the characters follow that byte:

S
[9IMIY] |[SITIR[IIN|G]
e S e S e

Not surprisingly, then, Pascal strings are often referred to as "length-prefixed" strings.

In the demonstration program, you encoutered the data type Str255. Str255 is the C name for a Pascal-style string
capable of holding up to 255 characters. As you would expect, the first byte of a Str255 holds the length of the string
and the following bytes hold the characters of the string.

Utilizing 256 bytes for a string will simply waste memory in many cases. Accordingly, the header file MacTypes.h
defines the additional types Str63, Str32, Str31, Str27, and Strl5, as well as the Str255 type:

typedef unsigned char Str255[256];
typedef unsigned char Str63[64];
typedef unsigned char Str32[33];
typedef unsigned char Str31[32];
typedef unsigned char Str27[28];
typedef unsigned char Str15[16];

Note, then, that a variable of type Str255 holds the address of an array of 256 elements, each element being one byte
long.

As an aside, in some cases you may want to use C strings, and use standard C library functions such as strlen, strcpy,
etc., to manipulate them. Accordingly, be aware that functions exist (CopyPascalStringToC, CopyCStringToPascal) to
convert a string from one format to the other.

You may wish to make a "working" copy of the SysMemRes demonstration program file package and, using the working
copy of the source code file SysMemRes.c, replace the function doResources with the following, compile-link-run, and
note the way the second and third strings appear in the window.

void doResources(void)

Str255 stringl = "\pls this a Pascal string | see before me?";
Str255 string2 = "Is this a Pascal string | see before me?";
Str255 string3 = "%s this a Pascal string | see before me?";
Str255 string4;

SIntl6 a;

// Draw stringl

MoveTo(30,100);
DrawString(stringl);

// Change the length byte of stringl and redraw
stringl[0] = (char) 23;

MoveTo(30,120);

DrawString(stringl);

// Leave the \p token out at your peril
// 1 (ASCII code 73) is now interpreted as the length byte

MoveTo(30,140);
DrawsString(string?2);

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources
Version 1.0 1-25

// More peril:- % (ASCIl code 37) is now the length byte

MoveTo(30,160);
DrawString(string3);

/! A hand-built Pascal string

for(a=1;a<27;a++)
string4[a] = (char) a + 64;

string4[0] = (char) 26;

MoveTo(30,180);
DrawString(string4);

// But is there a Mac OS function to draw the C strings correctly?

MoveTo(30,200);
DrawText(string2,0,40); // Look it up in your reference

1-26 Version 1.0 System Software, PowerPC Run-Time Environment, Managing Memory,

and Resources

MORE ON STRINGS — UNICODE AND CFString OBJECTS

In the Carbon era, no discussion of strings would be complete without reference to Unicode and CFString objects.

Preamble — Writing Systems, Character Encoding and Character Sets,

A writing system (eg., Roman, Hebrew, Arabic) comprises a set of characters and the basic rules for using those
characters in creating a visual depiction of a language. An individual character is a symbolic representation of an
element of a writing system.

In memory, an individual character is stored as a character code, a numeric value that defines that particular character.
One byte (8 bits) is commonly used to store a single character code, which allows for a character set of 256 characters
maximum.

A total of 256 numeric values is, of course, quite inadequate to provide for all the characters in all the world's writing
systems, meaning that different character sets must be used for different writing systems. In one-byte encoding
systems, therefore, these different character sets are said to "overlap".

As an aside, the Apple Standard Roman character set (an extended version of the 128-character ASCII character set) is
the fundamental character set for the Macintosh computer. To view the printable characters in this set, replace the
main function in the SysMemRes demonstration program with the following:

void main(void)

WindowRef windowRef;
SIntl6 fontNum, a,b;
UInt8 characterCode = 0;

doPreliminaries();
windowRef = GetNewCWindow(rWindowResourcelD,NULL,(WindowPtr) -1);
SetPortWindowPort(windowRef);

GetFNum("\pGeneva",&fontNum);
TextFont(fontNum);

for(a = 0;a < 256;a += 16)
for(b=0;b<16;b++)

MoveTo((a * 1.5) + 60,(b * 15) + 40);
DrawText(&characterCode,0,1);
characterCode++;
}
}

while(!Button())

’

}

In addition to the overlapping of character sets between writing systems, a further problem is conflicting character
encodings within a single writing system. For an example of this in the Roman writing system, change "\pGeneva" to "\
pSymbol" in the above substitute main function.

Unicode

Unicode is an international standard that combines all the characters for all commonly used writing systems into a
single character set. It uses 16 bits per character, allowing for a character set of up to 65,535 characters. With
Unicode, therefore, the character sets of separate writing systems do not overlap. In addition, Unicode eliminates the
problem of conflicting character encodings within a single writing system, such as that between the Roman character
codes and the codes of the symbols in the Symbol font.

Unicode makes it possible to develop and localize a single version of an application for users who speak most of the
world's written languages, including Russian (Cyrillic), Arabic, Chinese, and Japanese.

Core Foundation's String Services

Core Foundation is a component of the system software. Through its String Services, Core Foundation facilitates easy
and consistent internationalization of applications. The essential part of this support is an opaque data type (CFString).
A CFString "object" represents a string as an array of 16-bit Unicode characters. Several Appearance Manager, Control
Manager, Dialog Manager, Window Manager, Menu Manager, and Carbon Printing Manager functions utilize CFStrings.

CFString objects come in immutable and mutable variants. Mutable strings may be manipulated by appending string
data to them, inserting and deleting characters, and padding and trimming characters.

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources
Version 1.0 1-27

CFStrings have many associated functions that do expected things with strings such as comparing, inserting, and
appending. Functions are also available to convert Unicode strings (that is, CFStrings) to and from other encodings,
particularly 8-bit encodings (such as the Apple Standard Roman character encoding) stored as Pascal and C strings.

Example

For a basic example of the use of CFStrings, remove the calls to doMemory and doResources, and the functions
themselves, from the main function in the original version of the demonstration program SysMemRes and replace the
function doNewWindow with the following:

void doNewWindow(void)

WindowRef windowRef;

Str255 pascalString = "\pThis window title was set using a CFString object";
CFStringRef titleStringRef;

CFStringRef textStringRef = CFSTR("A CFString object converted to a Str255");
Boolean result;

Str255 textString;

windowRef = GetNewCWindow(rWindowResourcelD,NULL,(WindowPtr) -1);
SetPortWindowPort(windowRef);
UseThemeFont(kThemeSystemFont,smSystemScript);

titleStringRef = CFStringCreateWithPascalString(NULL,pascalString,
CFStringGetSystemEncoding());
SetWindowTitleWithCFString(windowRef, titleStringRef);

result = CFStringGetPascalString(textStringRef,textString,256,
CFStringGetSystemEncoding());
if(result)

MoveTo(135,130);
DrawString(textString);
}

if(titleStringRef !'= NULL)
CFRelease(titleStringRef);
}

At the sixth line, an immutable CFString object is created. The easiest way to do this is to use the CFSTR macro. The
argument of the macro must be a constant compile-time string (that is, text enclosed in quotation marks) that contains
only ASCII characters. CFSTR returns a reference (textStringRef) to a CFString object. This will be used later.

The call to the String Services function CFStringCreateWithPascalString converts a Pascal string (pascalString, of type
Str255) to a CFString object. The reference to the CFString object is then passed in a call to the Window Manager
function SetWindowTitleWithCFString to set the window's title.

1-28 Version 1.0 System Software, PowerPC Run-Time Environment, Managing Memory,

and Resources

The call to the String Services function CFStringGetPascalString converts the CFString object (textStringRef) previously
created by the CFSTR macro to a Pascal string (textString, of type Str255). 256, rather than 255, is passed in the

bufferSize parameter to accommodate the length byte. textString is then passed in a call to the QuickDraw function
DrawString, which draws the string in the window.

The golden rules for releasing CFString objects are: if a "Create" or "Copy" function is used, CFString should be called to
release the string when no longer required; if a "Get" function is used, CFString should not be called. Accordingly,

CFRelease is called only in the case of titleStringRef. Note that CFRelease is not NULL-safe, so you must check for a
non-NULL value before passing something to CFRelease.

System Software, PowerPC Run-Time Environment, Managing Memory, and Resources
Version 1.0 1-29

	SYSTEM SOFTWARE, POWERPC RUN-TIME ENVIRONMENT, MANAGING MEMORY, AND RESOURCES
	Demonstration Program: SysMemRes
	System Software
	PowerPC Run-Time Environment
	Fragments
	Code Fragment Resource

	Organisation of Memory
	The Application Partition
	The Stack
	The Heap

	Managing Memory — Mac OS 8/9
	Inside the Application Heap — Nonrelocatable and Relocatable Memory Blocks
	Nonrelocatable Blocks
	Relocatable Blocks

	Heap Fragmentation, Compaction, and Purging
	Locking and Unlocking Relocatable Blocks
	Moving Relocatable Blocks High
	Purging and Reallocating Relocatable Blocks
	Effect of a Relocatable Block’s Attributes
	Avoiding Heap Fragmentation

	Master Pointer Tag Byte - HGetState and HSetState
	Memory Leaks
	Memory Manager Errors

	Managing Memory — Mac OS X Considerations
	Preamble — Memory in Mac OS X
	Memory Management Considerations
	Allocating Memory
	Stack Size
	Master Pointer Allocation

	Resources
	About Files — The Data Fork and the Resource Fork

	Note
	Resources and the Application
	Resource Types and Resource IDs
	Creating a Resource
	Resource Attributes

	Template Resources and Definition Resources
	Resources in Action
	The Resource Map
	Reading in Non-Preloaded Resources
	Purgeable Resources
	Problems with Purgeable Resources
	Releasing Resources

	Resource Manager Errors

	Main Memory Manager Data Types and Functions
	Data Types
	Function
	Allocating and Releasing NonRelocatable Blocks of Memory
	Allocating and Releasing Relocatable Blocks of Memory
	Changing the Sizes of Nonrelocatable and Relocatable Blocks
	Setting the Properties of Relocatable Blocks
	Managing Relocatable Blocks
	Manipulating Blocks of Memory
	Allocating Master Pointers
	Accessing Memory Conditions and Freeing Memory
	Checking for Errors

	Main Resource Manager Constants, Data Types, and Functions
	Constants
	Resource Attributes

	Data Types
	Functions
	Reading Resources Into Memory
	Disposing of Resources
	Checking for Errors

	Demonstration Program SysMemRes Listing
	Demonstration Program SysMemRes Comments
	The 'plst' (Property List) Resource
	includes

	Prototypes: GetNewCWindow GetWindowPort
	Prototype: Button
	Prototype: ExitToShell
	Prototypes: TextFont DrawString
	defines
	main
	doPreliminaries
	doNewWindow
	doMemory
	doResources

	Not surprisingly, then, Pascal strings are often referred to as "length-prefixed" strings.
	DrawText(string2,0,40); // Look it up in your reference
	In the Carbon era, no discussion of strings would be complete without reference to Unicode and CFString objects.
	Preamble — Writing Systems, Character Encoding and Character Sets,
	A writing system (eg., Roman, Hebrew, Arabic) comprises a set of characters and the basic rules for using those characters in creating a visual depiction of a language. An individual character is a symbolic representation of an element of a writing system.
	In memory, an individual character is stored as a character code, a numeric value that defines that particular character. One byte (8 bits) is commonly used to store a single character code, which allows for a character set of 256 characters maximum.
	A total of 256 numeric values is, of course, quite inadequate to provide for all the characters in all the world's writing systems, meaning that different character sets must be used for different writing systems. In one-byte encoding systems, therefore, these different character sets are said to "overlap".
	As an aside, the Apple Standard Roman character set (an extended version of the 128-character ASCII character set) is the fundamental character set for the Macintosh computer. To view the printable characters in this set, replace the main function in the SysMemRes demonstration program with the following:
	void main(void)
	{
	WindowRef windowRef;
	SInt16 fontNum, a,b;
	UInt8 characterCode = 0;
	doPreliminaries();
	windowRef = GetNewCWindow(rWindowResourceID,NULL,(WindowPtr) -1);
	SetPortWindowPort(windowRef);
	GetFNum("pGeneva",&fontNum);
	TextFont(fontNum);
	
	for(a = 0;a < 256;a += 16)
	{
	for(b=0;b<16;b++)
	{
	MoveTo((a * 1.5) + 60,(b * 15) + 40);
	DrawText(&characterCode,0,1);
	characterCode++;
	}
	}
	while(!Button())
	;
	}
	In addition to the overlapping of character sets between writing systems, a further problem is conflicting character encodings within a single writing system. For an example of this in the Roman writing system, change "pGeneva" to "pSymbol" in the above substitute main function.
	Unicode
	Unicode is an international standard that combines all the characters for all commonly used writing systems into a single character set. It uses 16 bits per character, allowing for a character set of up to 65,535 characters. With Unicode, therefore, the character sets of separate writing systems do not overlap. In addition, Unicode eliminates the problem of conflicting character encodings within a single writing system, such as that between the Roman character codes and the codes of the symbols in the Symbol font.
	Unicode makes it possible to develop and localize a single version of an application for users who speak most of the world's written languages, including Russian (Cyrillic), Arabic, Chinese, and Japanese.
	Core Foundation's String Services
	Core Foundation is a component of the system software. Through its String Services, Core Foundation facilitates easy and consistent internationalization of applications. The essential part of this support is an opaque data type (CFString). A CFString "object" represents a string as an array of 16–bit Unicode characters. Several Appearance Manager, Control Manager, Dialog Manager, Window Manager, Menu Manager, and Carbon Printing Manager functions utilize CFStrings.
	CFString objects come in immutable and mutable variants. Mutable strings may be manipulated by appending string data to them, inserting and deleting characters, and padding and trimming characters.
	CFStrings have many associated functions that do expected things with strings such as comparing, inserting, and appending. Functions are also available to convert Unicode strings (that is, CFStrings) to and from other encodings, particularly 8–bit encodings (such as the Apple Standard Roman character encoding) stored as Pascal and C strings.
	Example
	For a basic example of the use of CFStrings, remove the calls to doMemory and doResources, and the functions themselves, from the main function in the original version of the demonstration program SysMemRes and replace the function doNewWindow with the following:
	void doNewWindow(void)
	{
	WindowRef windowRef;
	Str255 pascalString = "pThis window title was set using a CFString object";
	CFStringRef titleStringRef;
	CFStringRef textStringRef = CFSTR("A CFString object converted to a Str255");
	Boolean result;
	Str255 textString;
	windowRef = GetNewCWindow(rWindowResourceID,NULL,(WindowPtr) -1);
	SetPortWindowPort(windowRef);
	UseThemeFont(kThemeSystemFont,smSystemScript);
	titleStringRef = CFStringCreateWithPascalString(NULL,pascalString,
	CFStringGetSystemEncoding());
	SetWindowTitleWithCFString(windowRef,titleStringRef);
	result = CFStringGetPascalString(textStringRef,textString,256,
	CFStringGetSystemEncoding());
	if(result)
	{
	MoveTo(135,130);
	DrawString(textString);
	}
	if(titleStringRef != NULL)
	CFRelease(titleStringRef);
	}
	At the sixth line, an immutable CFString object is created. The easiest way to do this is to use the CFSTR macro. The argument of the macro must be a constant compile-time string (that is, text enclosed in quotation marks) that contains only ASCII characters. CFSTR returns a reference (textStringRef) to a CFString object. This will be used later.
	The call to the String Services function CFStringCreateWithPascalString converts a Pascal string (pascalString, of type Str255) to a CFString object. The reference to the CFString object is then passed in a call to the Window Manager function SetWindowTitleWithCFString to set the window's title.
	The call to the String Services function CFStringGetPascalString converts the CFString object (textStringRef) previously created by the CFSTR macro to a Pascal string (textString, of type Str255). 256, rather than 255, is passed in the bufferSize parameter to accommodate the length byte. textString is then passed in a call to the QuickDraw function DrawString, which draws the string in the window.
	The golden rules for releasing CFString objects are: if a "Create" or "Copy" function is used, CFString should be called to release the string when no longer required; if a "Get" function is used, CFString should not be called. Accordingly, CFRelease is called only in the case of titleStringRef. Note that CFRelease is not NULL-safe, so you must check for a non-NULL value before passing something to CFRelease.

